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Analytic properties of the recursion method in the presence of 
band gaps? 
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Institute of Materials Science, University of Tsukuba, Sakura, lbaraki 305, Japan 

Received 5 January 1987 

Abstract. The recursion method gives a good approximation of the density of states in the 
single-band case, where the recursion coefficients converge. When band gaps exist, it is 
known that they exhibit asymptotic undamped oscillations. In order to clarify these 
asymptotic behaviours, an analytic study of the recursion method applicable to the band-gap 
case is presented. The asymptotic properties of the system of orthogonal polynomials, to 
which this method is closely related, are investigated by use of the concept of the exterior 
mapping function. Various relations, which connect the means of the recursion coefficients 
to the support of a spectrum, are obtained. The period of their asymptotic oscillations is 
written as a function of the support. The numerical results by Turchi, Ducastelle and 
Trkglia can be well interpreted by the present theory. The asymptotic properties of the 
truncated basis are also examined. 

1. Introduction 

Since the recursion method was introduced by Haydock er a1 (1972), it has been 
successfully used to investigate the electronic structure or the vibrational spectrum of 
the system, where its Hamiltonian or its force matrix is written in the tight-binding 
form (for a review see Haydock (1980) and Kelly (1980)). This method gives an 
approximation of the diagonal element of the resolvent, which is expressed in the 
continued fraction form by use of the recursion coefficients. Here the recursion 
coefficients are computed successively from the Hamiltonian and the state on which 
the diagonal element is taken. 

It has been empirically known that this method reproduces the density of states 
quite well in the single-band (no band gap) case, where the recursion coefficients seem 
to converge, and this convergence is essential for the facility of this method. On the 
contrary when the band gap exists (multiband case), it was soon pointed out that the 
recursion coefficients do not converge and exhibit undamped oscillations (Gaspard 
and Cyrot-Lackman 1973), which is a natural consequence since their convergence 
implies the single band. Therefore the recursion method has been scarcely used in the 
multiband case. 

Although the convergence of the recursion coefficients in the single-band case had 
been confirmed numerically in many examples, the reason or the condition for the 
convergence was not necessarily fully understood. Several years later Magnus (1979) 

t This paper is based on a thesis submitted by the author to the University of Tokyo in November 1985. 
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pointed out that in the single-band case the rigorous description of the recursion 
method is possible by using the Szego theory (Szego 1958) on the asymptotic forms 
of general orthogonal polynomials. The correspondence between the recursion method 
and the system of orthogonal polynomials with an adequate weight is easy to derive 
in the case where the spectral function is well defined. If the band is single and its 
spectral form satisfies a certain condition (Szego condition), the empirical law of the 
convergence can be proved through this correspondence. Magnus also examined the 
multiband case, which is related to the orthogonal polynomials whose weight has a 
system of intervals as the support, but the obtained result seems to be less fruitful than 
in the single-band case (see also Magnus 1985). The orthogonal polynomials defined 
on a system of intervals have been far less investigated than those on a single interval 
(see, e.g., Ahiezer (1960) and Nuttall and Singh (1977)), and so in order to treat the 
multiband case, it is necessary to develop the theory on such orthogonal polynomials. 

A few years ago Turchi et a1 (1982, here referred to as TDT) carried out extensive 
numerical experiments on the recursion coefficients, mainly in the two-band case, and 
revealed the characteristic features of their asymptotic behaviours. According to the 
TDT results (see also Haydock and Nex (1985)) their asymptotic oscillations seem to 
be incommensurate in general and to depend only on the positions of the band edges 
(including also the inner edges constituting the band gap), i.e. the support of the 
spectrum. If two sub-bands have the bandwidths of the same order (about less than 
a factor of two), then the sequences of the recursion coefficients look like a mixture 
of two oscillating subsequences with the same period. The diagonal element of the 
resolvent was also reconstructed by an adequate termination of the coefficients. 

These results leave some problems unsolved. For example, one does not know 
what quantity determines the period of the asymptotic oscillations, although it seems 
to be written as a function of the support. If one computes the eigenvalues of the 
truncated Hamiltonian, then what information do these eigenvalues give? These 
problems may be solved by a similar theory in the multiband case as the Szego theory 
in the single-band case. 

In this paper an analytic description of the orthogonal polynomials associated with 
a system of intervals is given with the main interest in their asymptotic behaviours, 
and a clear insight into the asymptotic properties of the recursion method in the general 
multiband case will be gained. The limiting forms of the orthogonal polynomials are 
examined by use of a special field in analytic function theory, which is familiar in 
potential theory (Tsuji 1959) but is not necessarily familiar in the theory of condensed 
matter. 

Our theory is outlined as follows. First we introduce the fundamental theorem 
which says that one can define a family of polynomials whose limit forms are written 
by the (generalised) exterior mapping function (EMF). Next the system of orthogonal 
polynomials is shown to belong to this family under a certain condition (the Geronimus 
condition) which can be regarded as being satisfied in the ordinary case, and as a 
consequence the asymptotic behaviours of the recursion coefficients are investigated 
in relation to the EMF. The EMF is closely related to the complex potential in two- 
dimensional electrostatics, and thus its explicit form can be written through the problem 
of the electrostatic potential. 

This paper is organised as follows. First in 0 2, the recursion method is formulated 
in the form convenient for the present theory, and its relationship to the system of 
orthogonal polynomials is described. Section 3 is devoted to the introduction to the 
EMF and the above-mentioned fundamental theorem. In § 4 the Geronimus condition 
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and the explicit form of the EMF are given, and as a consequence a set of limit relations 
of the recursion coefficients is derived. The period of their asymptotic oscillations is 
also considered. A good agreement with the TDT numerical results is found. The 
asymptotic properties of the truncated basis are analysed in 0 5 ,  and some simple cases 
are treated in 0 6. Finally in P 7 the results of this work are summarised. 

2. Preliminaries 

Our problem is described as follows: when the Hamiltonian H and an arbitrary 
normalised state, which we call IO), are given, then how do we approximate the diagonal 
element of the resolvent denoted by G(z)  = (Ol(z - H)-'IO)? Here we consider the case 
where its spectrum is bounded and always contains an absolutely continuous part. An 
additional discrete (point) spectrum is also allowed but a singularly continuous spec- 
trum is left out of our consideration. 

Hence the spectral representation 

G (  z )  = I dx 
z - x  

is possible and the spectral function w(x) is decomposed into two parts; the non- 
negative Lebesgue integrable function with the bounded and non-empty support 
(absolutely continuous part), and the assembly (or null) of S functions corresponding 
to a discrete spectrum. In the present theory we are interested in the asymptotic 
properties of the recursion method. As will be seen later in 0 4.3 they are not affected 
by a discrete spectrum, and so we leave it out of account for the present. Thus it is 
hereafter assumed that w(x) consists of an absolutely continuous spectrum only, i.e. 
its support is composed of line segments on the real axis. 

We can generate the infinite series of states 

IO), H I O ) ,  H~~o), H ~ I O ) ,  . . . , H ~ I O ) ,  . . . 
which are linearly independent of one another since w(x) contains a continuous 
spectrum. Thus the following orthonormalised basis set of infinite dimension, say W, 
can be constructed by the orthonormalisation of Schmidt 

w =  {IO), ii), 12), 13), . . . , i n ) ,  . . . I. 
We intend to have the (semi-infinite) matrix representation of H in this basis, and 
then to calculate G(z).  It is obvious that the nth ket is written as 

In) = P,(H)IO) (2.2) 
where p,( . ) is a polynomial of degree n. It is familiar that the matrix representation 
of H is tridiagonal, and the following recurrence relation holds: 

b,l n + 1) = ( H  - a,)ln) - b:-,ln - 1) (2.3) 
where a,  and b, are the recursion coefficients and are the diagonal and subdiagonal 
elements respectively: 

a, = ( n l H l n )  b, = ( n + l l H l n ) .  (2.4) 
In general b, is complex while a, is real, but the phase of b, (i.e. the phase of In + 1)) 
can be chosen arbitrarily, so we hereafter let b, be real and positive (non-zero). Then 
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it follows that p,(x) is a polynomial with real coefficients. The expression for G ( z )  
by use of the recursion coefficients is also familiar: 

G ( z )  = ( Z  - U,- b i / { z  - U, - b: / [ z  - U*- b: / ( z  - .  . . )I})-'. (2.5) 

We next introduce the spectral representation of H 

H = \x)x(xlN(x) dx s 
where N ( x )  is the density of states and the unit operator is written as I = 5 Ix)(xlN(x) dx. 
Note that the orthonormalisation relation between the Ix) is written as (xIx ' )= 
S(x-x ' ) /N(x) .  It is readily seen that the spectral function in (2.1) is given as 
w(x) = N(x)l(xlO)l* and w(x) is normalised as 

w(x)dx=(O10)=1. I 
Hereafter the ket indicated by the letter x denotes the eigenstate whose eigenenergy 
is x, while a numeral or the letter m or n represents the basis state in W. 

From the orthonormalisation relation between n)  we have 

Consequently the sequence of polynomials pn (x)  constitutes the system of orthonormal 
polynomials whose associated weight is w(x). The recurrence relation for p,(x) is 
apparent from (2.2) and (2.3). The function w(x), which is the spectral function of 
G ( z )  and at the same time is the weight function corresponding to the orthonormal 
polynomials p,(x), is often called the bund throughout this paper. 

We introduce the orthogonal (not normalised) polynomial P, (x)  whose leading 
coefficient is unity, and let its square norm be K ,  

P n ( X )  = X n  -t . . . = K,P,(X) (2.8) 

As will be seen later, P,,(x) is more convenient than p,(x) in the present theory, and 
an energy argument x is to be extended to the complex plane. The analytic continuation 
of Pn(x)  to the complex argument is trivial since it is a polynomial. Hereafter the 
letter z is used to denote a point in the complex energy plane, while x is a point on 
the real axis. When z is used, the infinity is also regarded as an ordinary point. We 
will use P,,(z) in many cases, while p,(x) or Pn(x)  appears occasionally. 

Regarding P n ( z )  the recurrence identity comes to have a form 

f'n + 1 ( z = (z - an ) Pn ( z - bZ, - 1 Pn - 1 ( z ) .  (2.10) 

This recurrence equation has two linearly independent (concerning n ) solutions; one 
is P n ( z )  and the second-kind function Q n ( z )  defined by 

Q n ( z )  = 5 wOPf l (x )  dx 
z - x  (2.11) 
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is introduced as the other. Note that infinity is a pole of multiplicity n for P,(z), while 
it is a zero of multiplicity n + 1 for Qn( z), i.e. the Laurent and the Taylor series at 
infinity are given as 

P , (z )=z"+ . . .  Q,, (Z)=K: /Z~+ '+  . . . .  (2.12) 

We also introduce the analytic function, g,(z), defined by the following infinite 
continued fraction: 

g , ( Z ) = ( z - a , - b Z , l { z - a , + , - b ~ + 1 l [ ~ - a , + ~ - b ~ + , / ( z - .  . . )I>)- '  (2.13) 

which has the same analyticity as G(z)  in the sense that in the physical sheet it is 
holomorphic with no zeros except infinity (a simple zero), and its imaginary part has 
an opposite sign to Im z. Note that Qo(z) = go(z) = G(z) .  I t  is easy to show that 

(2.14) , = O  
from the fact that the right-hand side of (2.14) satisfies the recurrence relation (2.10). 

The case where an energy is real with infinitesimal imaginary part, z = xi .  io, will 
also be necessary. In this case it suits our convenience to represent g,(xi.iO) by its 
absolute value and argument 

g,(x*iO) = g,(x) exp(%O,(x)). (2.15) 

It is obvious that 8, (+CO) = 0, 8, (-CO) = T and 0 s 8, (x)  s T, but 8, (x)  is not necessarily 
monotone non-increasing. The second-kind function is then expressed from (2.14) as 

Q n ( X * i O )  = e f l ( x )  exp(Ti@,+,(x)) (2.16) 

(2.17) 

(2.18) 

Here the first equation is obtained from (2.11) and the following well known identity 
is used for the second one 

2 
P f l + l ( Z ) Q f l ( Z )  - P f l ( Z ) Q n + l ( Z )  = K,. 

Note that the expressions (2.18) are not valid at the band edges, nor in general at the 
branch points of G(z )  whose cuts extend to the unphysical sheet, since they are also 
the branch points of Qn(z) and thus expression (2.16) is inadequate there. 

Finally we refer briefly to the Szego theory which, as previously mentioned, can 
be applied to the single-band case. We can assume, without restricting the generality, 
that the band is spread between - 1  and 1 .  Then according to the Szego theory (Szego 
1958) if the weight function w(x) satisfies the Szego condition 

( 1  - x2)-"* In w(x) dx > -CO 
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then the corresponding orthogonal polynomial P,,( z )  satisfies the following two limit 
identities: 

where both the two roots have their principal values z as z+m. It is known that the 
Szego condition is a suficient (not necessary) condition for the limit identity (2.19). 
Note that the limit function is the one which maps the exterior of the line segment 
[-1,1] conformally on the exterior of the circle of radius f. When the second limit 
identity is substituted into the recurrence relation (2.10), and the Laurent expansion 
at infinity is taken, then it is straightforward to obtain the well known convergence of 
the recursion coefficients. 

3. Exterior mapping problem 

In the present theory we treat a set in the complex plane and a conformal mapping 
of a certain kind. The following conventions of notations and terminologies, etc, are 
used throughout this paper. 

(i)  Notations. When a set S is given in the complex plane, then its complement 
and its boundary are denoted by C [ S ]  and as, respectively. We mean by n , (z )  a 
polynomial of degree n whose leading coefficient is unity, i.e. n,(z) = z n  + . . . . 

When an arbitrary functionf( z), which is often a polynomial, is given, the maximum 
of its absolute value in a closed set S is denoted by M ( f ;  S), i.e. M ( f ;  S)= 

(ii) Roof.  The nth root of lI,,(z) is often taken. This root is chosen to have the 
principal value such that (Il ,(z))”“/z = 1 at infinity. 

(iii) Continuum. A continuum is originally defined (see Hille 1959) as being a 
non-empty closed set which cannot be separated into the union of two disjoint 
non-empty closed sets. The case of a single point is excluded. A line segment belongs 
to a continuum. 

In the present theory we usually treat a bounded continuum whose complement is 
simply connected, which is hereafter referred to as a continuum for simplicity. We use 
the symbol E to denote a continuum under consideration. In many cases the union 
of disjoint continua is also considered, where the union is denoted by E, and its kth 
component continuum is indicated by ek, i.e. E = e ,  + e, + e3 + . . . , where ei n ej = 0 for 
i # j .  Note that C [ E ]  is open since E is closed, and C [ E ]  contains infinity as an 
interior point since E is bounded. 

(iv) Exterior mappingfunction ( E M F ) .  Suppose that E is a continuum (in the above 
sense). Then there exists the analytic function F (  z ) (  = z +. . . as z + CO), such that it 
maps C [ E ]  conformally on the exterior of a circle centred at the origin. The function 
F ( z )  is unique and is called the exterior mapping function (EMF) (Hille 1962, p 339). 
The radius of the circle is called the exterior mapping radius. In this definition it is 
necessary that C [ E ]  is simply connected, but in the present theory this E M F  is 
generalised to include the case where E is a union of disjoint continua and thus C[ E ]  
is multiply connected. 

First of all, we consider the problem of the two-dimensional electrostatic potential 
in the system of conductors. Suppose that the finite number, say m, of solid conductors 
are distributed with no contacts in the two-dimensional plane, and electric charges 

max,,s I f (z) l .  



Recursion method in the presence of band gaps 4135 

can move freely from one conductor to another, i.e. the potentials of all conductors 
are kept to be equal to one another. Each conductor is evidently regarded as a 
continuum in the complex plane, and the system of conductors forms a union of 
disjoint continua and so is denoted by E whose kth component conductor is ek. The 
case of a single conductor is not excluded. 

Then we assume that continuous charge 2.rr is given on E, and introduce the complex 
potential (Panofsky and Phillips 1962), defined in the usual manner where a point 
charge q, located at zo, causes the complex potential f (z )  = -(q/277) In(z-z,). The 
curves Ref ( z )  = constant and Im f (z) = constant give the equipotential curves and the 
streamlines (lines of electrical forces) respectively. The charge distribution is unique, 
and thus the complex potential (analytic function), +(z; E ) ,  which is defined in C [ E ] ,  
exists under the condition that 4(  z; E )  = -In z + O( l / z )  as z + 00. The point infinity 
is a branch point of +(z;  E ) .  In the general case where E is a union of two or more 
disjoint continua, +(z;  E )  has the other multivalued property. When z is moved round 
counterclockwise along a closed curve which surrounds one component continuum 
only, say ek,  then +(z;  E )  is increased by 4 q k ,  qk being the charge on ek. Thus the 
multivalued property appears in Im 4 (z ;  E )  only and in every case Re +(z;  E )  is single 
valued. When z is on the surface of conductors a E, the equality Re 4(  z E a E ; E )  = V (  E )  
holds, V ( E )  being the electrostatic potential of E. 

In the present theory the function defined for z E C [ E ]  by 

@(z; E )  = exp[-+(z; E ) ]  (3.1) 
is more convenient than &(z; E ) .  The absolute value of @ ( z ;  E )  is single valued in 
C [ E ] ,  although its argument is multivalued. We make the branch cuts for @(z; E )  
as follows: let E' be the set of points on the streamlines passing through the saddle 
points of the electrostatic potential (see figure l ) ,  then we cut the domain C [ E ]  along 
E', which is a union of arcs, and let E* = E U E'. Note that E' is unique. The set 
E* is a bounded continuum, whose complement C [ E * ]  is simply connected. The 
analytic function @(z; E )  is univalent and meromorphic in C [ E * ]  with a singularity 
at infinity (a simple pole) only, and has the Laurent series as 

@ (z; E ) = z + CO + Cl/ z + . . . . 

. .  
E C  

Figure 1. Branch cuts ( E ' :  full lines) for Q ( r ;  E ) .  E is composed of e , ,  e2 and e3. E' 
is given by the streamlines passing through the saddle points (0) of the potential. The 
broken curves are the equipotential curves. 
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The equipotential curves and the streamlines are now given by I@(z; E)I = constant 
and arg@(z; E )  =constant, respectively. On the boundary of E, we have I @ ( z E  
a E ;  E)I = y ( E )  = The quantity y ( E )  is called the logarithmic capacity of E 
(Hille 1962). 

Let us examine what mapping is obtaiped by the function J=@(z ;  E ) .  When z 
moves along aE, then 5 evidently moves on the circle: (51 = ? ( E ) ,  while the locus for 
z E E' is on the line segments which start straightforwards out of this circle (see figure 
2). Thus we can see that @(z; E )  maps C[E*] conformally on the exterior of the disc 
with whiskers, which is the union of the disc of radius y(  E )  and the line segments, the 
latter of which are the image of E'. For simplicity we hereafter call such a function 
a generalised exterior mapping function (EMF) ,  and mean the above situation by the 
statement that @(z; E )  is the E M F  such that E + y (  E ) .  The limit function in the limit 
identity (2.19) by Szego is the EMF such that [ - 1 , 1 ] + + .  

f 5 plane 

Figure 2. Schematic depiction of a conformal mapping by the EMF: l = @ ( z ;  E ) .  The 
saddle points and their images are indicated by 0. 

The radius of the disc which equals the logarithmic capacity should be called the 
generalised exterior mapping radius, and is also equal to the quantities which have 
other names according to their definitions: transfinite diameter and Tchebycheff con- 
stant (see appendix 1 ) .  Hereafter we use the term transjnite diameter to denote y (  E ) .  

Now we can have a fundamental theorem as concerns the limit of the nth root of 
a certain family of polynomials (see Walsh 1956). 

Theorem 1 .  Let {II,(z)} be a sequence of polynomials. Suppose that 
Iim [ M ( I I ,  ; E)]"" = y ( ~ )  

and all zeros of II, (z)  are bounded, then 

n-m 

Iim [II,(z)]'/" = @(z; E )  for z E C[ E + ]  
n-m 

(3.2) 

(3.3)  
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where E +  is a bounded continuum, such that it contains E * ,  all zeros of II , (z)  are 
located in E', and C [ E + ]  is simply connected. 

Note that the right-hand side of (3.3) is analytic in C [ E ]  (although it is not necessarily 
single valued), and thus the analytic continuation is possible as far as the left-hand 
side can be defined. The proof of theorem 1 is as follows. Consider the function 
II,,(z)/(@(z; E ) ) " ,  defined in C [ E ] ,  where it is holomorphic and its absolute value is 
single valued. By the maximum principle we have 

l ~ n ( z ) l / l @ ( z ;  E ) ( "  
Let its nth root be f n ( z )  

M ( n , / @ " ;  a E )  = M W n ;  E ) / ( Y ( W  for z E C [ E ] .  

fn(z)  = ( rL(z) ) I 'n /@(z;  E )  (3.4) 
then fn(z)  is holomorphic and single valued in C [ E + ]  even at infinity (not in C [ E * ]  
if the zero of II,(z) exists in C [ E * ] )  and 

f n ( a )  = 1 (3.5) 
l f n ( z ) I s  [MW,; E ) l " " / r ( E )  for z E C [  E + ] .  (3.6) 

Thus from the hypothesis fn(z)  is uniformly bounded in C [ E + ] ,  and consequently 
{fn(z)} is a normal family in C [ E + ]  (see Hille 1962, p 2 3 5 ) .  We can then find a 
subsequence which converges to a limit function, which takes the value unity at infinity, 
and whose absolute value in C [ E f ]  is not greater than unity from (3.6) and the 
hypothesis. So it is identically equal to unity by the maximum principle, which applies 
to every limit function. Therefore it is concluded that 

lim f n ( z )  = 1 for z E C [  E + ]  
n - x  

and the proof is completed. 

replaced by the following limit relations: 
It is to be noted that this proof is also valid when equations (3 .5)  and (3 .6)  are 

n - r x  lim fn(co) = 1 (3.7) 

for z E a E, (3.8) 

There exist several kinds of polynomials which satisfy the hypothesis of this theorem. 
One of the most important is the Tchebycheff polynomial, Tn(z ;  E )  = Z" +. . . (see 
appendix l ) ,  which is defined as minimising among n , ( z )  the maximum of its absolute 
value in E. 

lim sup \ f n (z ) l  s 1 
n - + e  

4. Asymptotic forms of orthogonal polynomials 

In the present theory the multiband case is treated in general. The support of the band 
w ( x )  is then a union of disjoint continua, each of which is a line segment on the real 
axis. Let m be the number of comonent line segments, then the support E is written 
as 

E = e , + e , + e , +  . . . +  e, 
ek = [Bk, Akl k =  1 , 2 , .  . . , m 
B, < A ,  < . . . < Bz < A ,  < B1< A l .  

Note that Ak and Bk are given in descending order. 
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The orthogonal polynomial and other related functions have been introduced in 
0 2, where their exprressions contain only one argument, x or z. They are, of course, 
functions not only of x or z but also of the band, and so the support of the band is 
hereafter included in the argument, i.e. the notations such as P,,(z;  E ) ,  Qn(z; E ) ,  etc, 
are used. Note that they also depend on the band shape, although it is not explicitly 
written. On the contrary, the EMF, @ ( z ;  E ) ,  which has been introduced in 0 3 and is 
expressed in the same form, depends on the support only. Here and hereafter the term 
band shape is used to specify the variety of weight functions (spectral structures) with 
the same support. 

4.1. The Geronimus condition 

Theorem 1 is applicable to the orthogonal polynomials, when the band w(x) satisfies 
the condition 

X + 6  

a(i3)= inf w(x) dx. (4.1 ) 
[ x * x + ~ l c E  I, lim tj'l' In a ( 8 )  = 0 

s-+o 

This condition should be named after Geronimus (1960). 

Theorem 2. Suppose that the weight w(x) satisfies the Geronimus condition (4.1), and 
let P,, (x; E )  be the corresponding orthogonal polynomial with a leading coefficient 
unity, then we have 

n-m lim (P,,(z; E ) ) * / ~ = @ ( Z ;  E)  for z E C[E*] (4.2) 

n-m lim (K,(E)) ' /"  = n-m lim ( M ( P , , (  a ;  E); E))" '= y ( E ) .  (4.3) 

It is obvious that E* = [ B , ,  A,]. It is well known that all zeros of P,(z; E) are located 
on E* (not necessarily on E ) ,  i.e. they are bounded, and we can take E + =  E*. 

We refer to the minimal properties of the orthogonal [P, , (z;  E ) ]  and the Tchebycheff 
[ Tn(z;  E)] polynomials. They minimise among n,,(z), the square norm and the 
maximum of the absolute value in E, respectively. From these properties we have 

Kfl(E)=IlP"(*; E)llcl17-n(*; E)II<-(T,( .;  E ) ; E ) < M ( P f l ( * ;  E ) ;  E )  (4.4) 

where the well known relation /If( .)IIS M ( f ;  E ) ,  is used. We know that 
l imn+m(M(T, , (*;  E ) ;  E ) ) ' / ' =  y ( E )  (see appendix 1) and thus we can complete the 
proof if we have the limit relation 

which is nothing but the convergence to unity since the superior limit is not greater 
than unity from (4.4). 

Geronimus (1960, p 151) showed that the condition (4.1) is sufficient (not necessary) 
for the relation (4.5) in the single-band case. His argument did not explicitly include 
the multiband case, but can be easily extended. Suppose that P,,(x; E )  attains the 
maximum of its absolute value in E at X ~ E  ek, and let M ,  = M ( P , , ( . ;  E ) ;  E )  for 
simplicity. Then the Markoff inequality (see Schaeffer 1941) written as 

M(n; (x) ;  [ - I ,  11) n2MM(n"(x); [-I, 11) 
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where IIn(x) is arbitrary with real coefficients and nL(x) is its derivative, leads to the 
relation 

IPn(x; Ell ab'% 
for Jx  - xol 4 wk/4n2 and x E ekr where w k  = Ak - Bk. Hence we may obtain 

x+w,/4n2 

w ( x )  dx. I, ( K, /  M,)' a inf 
[x ,x+wk/4n2]cek 

Now it is obvious that the condition (4.1) is sufficient for (4.5), i.e. the proof of theorem 
2 is completed. 

Concerning the second-kind function we have the following theorem. 

Theorem 3. Suppose that the Geronimus condition is satisfied, then 

n-m lim [ Q n ( z ;  E ) ]" ( "+ ' )=  [ y ( E ) ] * [ @ ( z ;  E ) ] - '  for Z E  C [ E * ]  (4.6) 

where the root is so taken as to have the same argument as l / z  at infinity (see (2.12)). 

Proof: Note that the zeros of Q n ( z ;  E )  are located at infinity (multiplicity n + 1) and 
on E'. We let 

f n ( z )  = [ Q n ( Z ;  E ) I " ( "+ ' )@(z ;  E ) / [ r ( E ) I 2  
and then intend to prove 

lim f n ( z )  = 1 for Z E  C [ E * ] .  
n + m  

We see that f n ( z )  is holomorphic and single valued in C [ E * ]  and 

while Ifn(z)l  is single valued in C [ E ] .  Let E, be the region surrounded by the 
equipotential curves outside E, given by E, = { z I IO( z ;  E ) J  4 y(  E )  + E } ,  where E is an 
arbitrary (small) positive constant. It is obvious that E, is a union of disjoint continua 
(or a single continuum), and contracts to E as E + +O. The EMF such that E + y (  E )  
is also the EMF such that E, + y (  E )  + E.  From (2.11) we have 

IQn(z; E)I d M ( P n (  a ;  E ) ;  E ) /  min Iz-xI for z E aE,. (4.7) 

As concerns the lower bound of Iz - X I ,  where z E aE, and x E E, we can find an adequate 
positive number c independent of E, such that 

Z E J E . , X S E  

min J z  - X I  3 C E * .  
zt-JE.,xc E 

Substitute this into (4.7) and take the ( n  + 1)th root. Then we have 

lim sup Ifn(z)l d 1 + E /  y(  E )  for z E aE,. 
n-m 

Since E is arbitrary we have 

lim sup Ifn ( z ) l s  1 for z E dE. 

Hence theorem 3 is proved by the same argument as the proof of theorem 1 (refer to 
(3.7) and (3.8)). 

n-m 
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As is mentioned before, the Geronimus condition (4.1) is only a su@cient (not necessary) 
condition for theorems 2 and 3. Thus it can be made less restrictive, but no further 
considerations are given in this paper. At least this condition is satisfactory unless we 
treat the spectrum which vanishes very singularly at the band edges or inside the band. 
Hereafter it is assumed without notice that the band shape satisfies the Geronimus 
condition. 

4.2. Explicit form of E M F  

Our next problem is to ascertain the E M F  such that E += ? ( E ) .  It is obvious that there 
exist m - 1 saddle points of the equipotential curves, each of which appears once in 
each energy range of the band gaps, i.e. let the saddle points be sl, s 2 , .  . . , s,,-~ in 
descending order, then Ak+,  < sk < Bk.  

It is easier to find the complex potential 4 ( z ;  E )  than the EMF. From the general 
properties of the complex potential, we can see that it maps the upper half of the z 
plane conformally on the open degenerate polygon as is shown in figure 3. The quantity 
qk is the charge distributed on e k e  Such a conformal mapping is known as the 
Schwarz(-Christoff el) transformation (Panofsky and Phillips 1962) and is written as 

where the argument of the integrand and the integration constant are taken such that 
4 ( z ;  E )  behaves like -In z as z - 0 0 .  Note that the coordinates of sk should be so 
chosen that all vertical lines connecting A ;  to BI, in figure 3 are aligned with one another. 

z plane t 57 

t 5 plane 

Figure 3. Schematic depiction of a conformal mapping by the complex potential: [ =  
$ ( z ;  E ) .  The points A;,  E ;  and s i  in the 5 plane correspond to A,, EL and sk in the z 
plane, respectively. The three-band case is shown. 
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From (4.8) the following relations are obtained, where in order to simplify the 
equations we use the real function X(x;  E )  defined on the real axis as 

(4.9) 

(i) Impose the alignment of the vertical lines in figure 3, i.e. the equality of the 
potentials of component conductors 

4(Ak+l+iO; E)=4(Bk+iO;  E )  k = 1,2 , .  . . , m - 1 

then we have 
9, 

J A L + ,  X(x ;  E )  dx = o  k = l , 2  ,..., m-1. (4.10) 

Through this equation sk is determined as a function of Ak and Bk. We see that sk 
( k  = 1,2, . . . , m - 1) are the m - 1 roots of the algebraic equation of degree m - 1, 

m - l  n ( x - Sk ) = x m- ’ + c, -2x -2  + c, - 1x - I + . . . + Cl x + CO = 0 
k = l  

where the coefficients c, ( i  = 0,1, . . . , m - 2) are given by the solutions of 
simultaneous equation 

(4.11) 

the linear 

(4.12) 

(i i)  Concerning the charge qk distributed in ek. which is a function of E only, we 
have 

4(Ak +io; E) -4(Bk +io; E )  =iq,/2 k = 1,2, . . . , m 

and it follows that 

Note that equation (4.13) is composed of m equations, but one of them is redundant 
since 

m 

qk=27T. 
k = l  

(iii) The transfinite diameter ? ( E )  can be calculated by 

x - A l + l  )dx .  

(4.14) 

(4.15) 

(iv) Finally note that the derivative of the argument of the E M F  at z = x i  io can 
be written by X(x ;  E )  as 

X E  E 
otherwise. 

d 
-[arg@(x*iO; E ) ] =  
dx (4.16) 
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4.3. Limit relations of recursion coeficients 

First of all it is readily seen from (2.9) and (4.3) that 

lim (;gI bj)"' = y ( E )  
n - m  

(4.17) 

which is a generalisation of the convergence of b, in the single-band case. This relation 
indicates the limit of the geometric mean, while in the following the relations associated 
with the limits of the arithmetic means are given. 

The analytic function D,(z; E ) ,  which is holomorphic in C [ E * ] ,  is introduced: 

(4.18) 

D , ( q  E )  = 1 

lim [D,(z; E ) ] ' / "  = 1 
(4.19) 

for z E C [ E * ] .  
n - c o  

We define the coefficients dni and Ai ( i  = 1,2 ,3 ,  . . . ) by the following Taylor expansions: 

-InD,(z; ~ ) = d , , / z + d , ~ / z ~ + d ~ ~ / z ~ +  . . .  (4.20) 

-In(@(z; E ) / z ) = ~ ( z ;  E ) + l n  z 

=Al/z+(A2/2) /z2+(A3/3) /z3+.  . . . (4.21) 

Note that the A i  also depend only on E. From the limit identity (4.19) dni has the limit 
property 

lim ( ( 1 / n ) d n i )  = O  i = l , 2 , 3  , . . . .  
n-00 

We rather use the quantity Adfli = d,+l , i  - dni ,  which satisfies 

(4.22) 

Let us examine the Taylor series (at infinity) of the function 

f n ( z )  = P,+1(z; E)/(zP,(z; E ) )  = D,+,(z; E)@(z;  E)/(zD,(z;  E ) ) .  

From the recurrence identity (2.10) of P,(z; E )  we have 

f,(z) = 1 - [ u , , / z +  b Z n - 1 / ~ ~ + a , _ , b ~ - , / ~ ~ + ( a ~ _ l +  b;-2)bi-1/~4+. . . ] 
while by substituting (4.20) and (4.21) 

lnf,(z) = - [ (Al  +Adnl) /z+ (A2/2+Adn2)/z2+ ( A J 3  +Adn3)/z3+. . . I. (4.24) 

Comparing the l / z  terms of lnf,(z) from (4.23) and in (4.24), we have A l + A d n l  = a , ,  
and hence by (4.22), 

(4.23) 

1 n - 1  

A I  = lim (- c a j )  
n-m n,=o (4.25) 

which is a generalisation of the convergence of a, in the single-band case. 
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Using the terms of higher powers of l / z  from (4.23) and in (4.24), a set of limit 
relations of the recursion coefficients can be obtained successively after the straight- 
forward but tedious calculations 

(4.26) 

p ,  q, r , s = O ,  1 , 2 , 3 , .  . .  (4.27) 

and so on. The first equation in (4.26) is the same as (4.25). Note that ((ao)) = ((al)) = 
((a,) = . . . , ((a,bi)) = ((a2b:)) = ((a3b:)) = . . . , etc, and that when a, and b, are periodic 
with the same period the right-hand side of (4.27) can be replaced by the average over 
one period. 

The quantities Ai ( i  = 1,2,3,  . . . ) can be expressed by Ak and Bk ( k  = 1,2,  . . . , m) 
as follows. Note that sk ( k  = 1 , 2 , .  . . , m - 1 )  are determined by Ak and & through 
(4.11) and (4.12). By differentiating (4.21), we have 
m - l  - 1 / 2  n ( 1  - s k / z )  ( fi ( 1  -&/ Z)( 1 - B k / z ) )  
k = l  k = l  

= 1 + A  1 / Z  + A 2 / . i 2  + A 3 / Z 3  + I 

from which the following relations are obtained: 

j =  1 , 2 , 3 , .  . , 
k = l  

(4.28) 

(4.29) 

As mentioned in 0 2 the spectrum under consideration has been assumed to have 
no discrete (&functional) part. Here we consider what may happen if an additional 
discrete spectrum is also taken into account. Suppose that there exists a &functional 
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spectrum outside the band, i.e. w(x) has the support (in the sense of the support of 
the distribution) E = E + A ,  where E is a union of disjoint continua, A is a finite (or 
countable) point set, and E n A = 0. We can consider the situation where the continuous 
charge is put on E, and also define the complex potential, the E M F  of E, etc, in the 
same manner as in 0 3 .  It is obvious that the point set A never contains any portion 
of continuous charge. Therefore the E M F  of E is the same as the E M F  of E, i.e. the 
the limit relations obtained in this section are not altered by A. That is to say, the 
asymptotic behaviours of the recursion coefficients are not affected by the discrete 
spectrum in w ( x ) .  N o  further argument is evidently needed as concerns the discrete 
spectrum inside the band. 

4.4. Period of asymptotic oscillations 

Although rigorous arguments have been developed until now, we need some specula- 
tions in this subsection. 

First suppose for simplicity that only one gap exists and the recursion coefficients 
make periodic oscillations whose period is an integer p 

'p+J = 'J bp+J = bJ f o r j  = 0, 1 , 2 , .  . . . 
Then it is obvious from the definition (2.13) that gJ(z;  E )  and its argument at z = x -io, 
O,(x; E ) ,  are also periodic. Using the relation (2.14) and theorem 3 ,  we may obtain 

(4.30) 
P - l  

oJ(x; E )  = p  arg@(x+iO; E ) .  
J = o  

Note that the limit p + 00 is not taken. 
From the analyticity of g,(z; E )  one can see that O,(x; E )  varies in one of the 

manners which are schematically shown in figure 4. Let x be in the band gap, then 
the right-hand side of (4.30) is pq1/2, and so the relation pq1/2 = 0 (mod 7r) must hold. 
If the cases of two or more gaps are also taken into account then we have 

(4.31) 

one of which is redundant (see (4.14)). This is the necessary condition for the 
completely periodic oscillations with integral period p, and also for the asymptotic 
periodicity, since the same argument is also valid if the summation in (4.30) is replaced 
by that over the asymptotic forms of OJ(x; E ) .  

Next we consider how the recursion coefficients behave when we can find an integer 
p which satisfies (4.31). We should refer to the fact that the recursion coefficients a, 
and b, are bounded, and thus they must have convergent subsequences. This fact 
suggests the conjecture that a, and b, make asymptotically oscillating behaviours 
although it cannot be rigorously proved. The situation where they exhibit irregular 
variations seems to be physically unnatural, and so we assume that this conjecture is 
true. Here it is reasonable to say that, when p is the least positive integer which satisfies 
(4.31), then the recursion coefficieints oscillate asymptotically with period p ,  not 2 p  
or more. The period of the oscillations must be an integral multiple of p. Consider 
the single-gap case and suppose q1 =2.rr/p. Assume that q l  becomes a little larger, 
q1 = 27r/p + E ,  E being infinitesimally small, then 

pqk = 0 (mod 2T) k = 1 , 2 , .  . . , m 

lP~l1<1(2P)qll<1(3P)qll<.. . (mod 27r). 
Thus it is unnatural that the oscillation with period 2p or more is more preferable than 
that with period p. 
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X 

Figure 4. Three types of behaviours of &(x;  E ) ,  the argument of g,(x-io; E ) ,  in the 
single-gap case. They are classified by the sign of g,,(x-io; E )  when x is in the band gap; 
it is ( a )  positive, ( b )  negative and ( c )  has a zero in the gap. 

Concluding the above arguments the asymptotic recursion coefficients a, and b, 
are written as 

where S( . . . ) stands for a periodic function with period 27r concerning all arguments. 
We have considered only the integral period case, i.e. qk/27r being rational, which 

is not the general situation. I t  is natural, however, to assume that the asymptotic 
dependence (4.32) can be extended to the irrational case. In the single-gap case, which 
seems to be the most important among the multiband cases, the function in (4.32) is 
reduced to the periodic one with only one argument. 

Let us describe our results from a slightly different viewpoint. Consider a two-band 
case, and suppose ql/27r = 0.4746. Then we have 2(q1/27r) = -0.0508 (mod 1) - 0, 
which means that the recursion coefficients asymptotically oscillate with period nearly 
2 .  The deviation from 2 is piled up piece by piece, and nearly vanishes (in modulus 
unity) after 19.7( = l/O.OSOS) repetitions. Thus the asymptotic oscillations look like 
the mixture of two oscillating subsequences, both of which have period 39.4. In general 
if ql/27r is near to $, then two okillating subsequences with period Iq,/2~-41-' will 
be observed. If q1/257 is near to f (or :), then we have three subsequences with period 
lql/2r-f1-' (or use 3 instead of f ) ,  and so on. 

If we choose a support of a spectrum arbitrarily, then qk/27r is irrational in almost 
all cases, and we have incommensurate asymptotic oscillations of the recursion 
coefficients. 
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4.5. Comparison with the TDT numerical results 

In the TDT paper three figures (Turchi et a1 (1982), figures 2-4) were given to show 
the asymptotic oscillations of the recursion coefficients in the two-band case. In table 
1 the values of the characteristic quantities in the present theory are listed in three 
cases of the supports corresponding to the three TDT figures. The numbers, e.g. 2-39.4, 
in the entry period in table 1 mean that two oscillating subsequences with period 39.4 
will be observed. It is readily seen that our results are in good agreement with the 
numerical results of TDT, if one examines the arithmetic mean of a,,, the geometric 
mean of b,, and the period of the asymptotic oscillations. 

Table 1. The characteristic quantities of the supports treated in numerical work of TDT. 

TDT figure E A 1  y ( E )  % / 2 T  Period 

Figure 2 [-2,-1.71]+[1.81,2] -0.0712 0.4723 0.4746 2-39.4 
Figure 3 [-2, -0.4081 + [0.952,2] -0.0179 0.9391 0.4522 2-20.9 
Figure 4 [-2,1.1] + [ 1.5,2] -0.01 16 0.9912 0.271 1 4-47.4 

In figure 18 of their paper, TDT demonstrated the asymptotic oscillations of nearly 
triple period, which can also be explained by the following evaluation. The support 
in this case is [ O S ,  1.51 + [2.5,4.5]+ [5,6], and then we have A ,  = 3.2684, y ( E )  = 1.3372, 
q,/2.rr = 0.3203 and q2/2.rr = 0.3335, which leads to three subsequences with period 77 
by the same discussion as in § 4.4 (note that q2/2.rr is very close to f). 

5. Properties of the truncated basis 

When the recursion method is actually used, the recursion coefficients are computed 
up to finite order. Then we have the truncated (say, n-dimensional) basis, W,, = 
{IO), [I), 12), . . . , In - l)}, and the truncated Hamiltonian matrix H,, represented in this 
basis. Then it is obvious that 

P,,(x; E)=det(x-H, , ) .  (5.1) 

The properties of W, and H,, are also important when other physical quantities are 
taken into account in addition to the diagonal element of the resolvent. In this section 
we consider two problems as concerns their asymptotic features. 

The first problem concerns how the zeros of P,,(x; E ) ,  i.e. the eigenvalues of H,,, 
are distributed when n + 00. The solution is easily obtained. From (2.18) the zeros of 
P,(x; E)  in the band are given by 

O , , + l ( ~ ;  E)  = j x  j = l , 2 , 3  , . . . ,  n. 

Hence the integrated distribution function of the zeros are expressed in E -  as 

v,(x; E ) =  l--int(-a,,+l(x; 1 1 E) ) .  
n x  
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Here E -  is the set such that the points of the band edges are removed from E, int[ ] 
denotes the integral part, and v , ( x ;  E )  is normalised as v,(B,  +O; E )  = 0 and v , (Al  - 
0; E )  = 1. By virtue of theorem 3 the limit function of v , ( x ;  E )  exists and is given by 

v(x;E)=1-(1/.rr)arg@(x+iO;E) (5.3) 

which is called the equilibrium distribution (Hille 1962) and is equal to the charge 
distribution function in the system of conductors considered in § 3. The resultant limit 
expression is written by the EMF only, and so is independent of the band shape, 
although v , ( x ;  E )  for small n is no doubt affected by the band shape. 

The asymptotic (differential) distribution function of the zeros is thus given by 

X E  E -  
( 5 -4) 

.rr dx otherwise. 
d 

dx  

From the explicit form (4.9) of X ( x ;  E )  we can say that the eigenvalues of the truncated 
Hamiltonian matrix are distributed nearly uniformly except near the band edges where 
the distribution function diverges by the -4th power. 

When the recursion method is used, the eigenvalues of H,, are sometimes discussed 
in order to examine the band shape, but the present result indicates that such an 
attempt is absurd, at least for large n. 

If we denote the zeros of P,,(x;  E )  by xni ( i  = 1 , 2 , .  . . , n ) ,  then we have 
n - 1  n-1 n-2 i xni = aj i x i i =  C a ; + 2  b j  

i = l  j = O  i = l  j = O  j = O  
( 5 . 5 )  

which are obtained by calculating the traces of H,, and Hi, respectively. Using (5.4) 
we can calculate the limit of l / n  times the left-hand sides of ( 5 . 5 ) .  For example the 
first equation of (5.5) is reduced to 

1 n-1  

E n j = o  
5 x d v ( x ;  E ) =  lim (- a j )  

The integral in the left-hand side can be evaluated by the contour integral, where the 
residue at infinity is used, and the resultant relation coincides with the first one in 
(4.26). If the second equation of (5.5) is dealt with, we again have the second one in 
(4.26). The third and succeeding relations in (4.26) can also be obtained by calculating 
the traces of H i  and higher powers. 

The other problem concerns how much the truncated basis W,, contains the state 
with eigenenergy x. For this purpose the quantity 

is examined as a function of x. 
As mentioned in § 2, the expression (2 .18)  of P, , (x;  E ) ,  which we intend to use, is 

not valid at the band edges or at the singularities of G( z ;  E). In the following arguments 
we use it without making reference to these singularities. Note therefore that these 
points are implicitly excluded and that the results are not necessarily valid throughout 
the band. 

We refer to the famous Christoffel-Darboux formula 
n-1  

C ( P j ( x ;  E ) ) * =  bn-l(Pn-l(x;  E ) P ~ ( x ;  E ) - p n ( x ;  E ) P ~ - , ( X ;  E ) )  
j = O  
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and use the expression (2.18) of P,,(x; E ) .  Then we have 

1 
sin &(x;  E )  

0 ( n )  o(n)-,Oas n + m .  

The second term in the right-hand side vanishes as n +CO, if sin 8,(x; E )  has a positive 
lower bound, which is the case except for the band edges or the points where w(x) = 0. 
Hence we have 

I “ - 1  

and it follows that 

(5.7) 

This result is somewhat surprising. The asymptotic form of &(x)  is independent of 
the initial state IO), except for some energy eigenstates Ix) to which the state 10) is 
accidentally orthogonal. 

6. Simple cases 

As is seen in § 4, the EMF is written by use of hyperelliptic integrals (see appendix 2 
for the two-band case), and thus the numerical integration is inevitable in general. In 
several cases, however, some results can be obtained elementarily and are given in the 
following subsections. 

6.1. Single-band 

This case is elementary. For simplicity we let E = [ -1, 13, then there is no saddle point 
and thus d 4 ( z ;  E ) / d z =  - l / ( ~ ~ - l ) I ’ ~ ,  from which we have the famous Joukowski 
transformation as the EMF 

(6.1) @ ( z ;  E )  = $[ z + ( z2  - 1 )1’2] 

and y (  E )  = 4. This EMF has already appeared in the Szego theory. We may obtain 

These values suggest the convergence of the recursion coefficients (see (4.17) and 
(4.26)). 

* . . *  
A - 2  A I  = O  2 - 2  h3=0 4 - a  

A -1 

6.2. Symmetric two bands 

Here we mean the symmetric support, and the symmetric band shape is not assumed. 
Suppose for simplicity E = [-A, -B] + [ B, A], then one saddle point exists, which is 
evidently located at zero. Thus the EMF and other characteristic quantities are written 
as 

(6.2) @(z; E )  = f[(z2- A2)”2+ (z2  - B 2 ) ’ / 2 ]  

q1= q 2 =  7r ? ( E )  = $ ( A 2  - B2)1’2 

A l = 0  A 2  = ;(A2+ B 2 )  A j = O  A4=$(3A4+2A2B2+3B4),  . . . . (6.3) 
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Hence the asymptotic oscillations of the recursion coefficients are of double period. 
Let the asymptotic doubles be 

(ao, bo), ( a ,  9 b1)9 (ao, bo), 9 b ~ ) ,  * . 
then from (4.26), (4.27) and (6.3) 

a,+ a,  = 0 bo, bl = i [ ( A 2 - ~ i ) 1 ’ 2 *  ( B 2 -  

This result says that when E is fixed the asymptotic oscillations are characterised only 
by a single parameter, say ao, which depends on the band shape. 

6.3. Integral periods 

The case where the recursion coefficients have integral period was investigated by TDT. 
In the present theory this means that charges on all component continua are given by 
integral multiples of 277/p,  p being a period (integer). 

Consider the conformal mapping from z plane to J plane given by 

rI,( 2 )  = l P  + c 2 / p  (6.4) 

where all coefficients of rI,(x) are real and c is a positive constant. Suppose that 
rI,(z) and c are so chosen that each of the following two algebraic equations 

rI,(z) = * 2 c  (6 .5)  

hasp real roots, where multiple roots are also allowed. Thus all roots of dH,(x)/dx = 0 
are real. Let 

E = { x / - ~ c S I I , ( X ) C ~ C }  

then E is a union of at most p disjoint line segments, but here it is regarded as a union 
of p segments, some of which are joined with each other when multiple roots exist. 
From (6.4) we have 

d 1 dH,(z)/dz 
--[ln I ]  = -- 

dz p ( ~ p ( Z ) 2 - 4 c 2 ) ” 2  

which denotes that the present mapping is the EMF such that E + y (  E )  = c ” ~ ,  The 
band edges and the saddle points are given by the roots of (6.5) and the extrema of 
IIp(x), respectively, some of which are degenerate in the multiple-root case. The charge 
in each segment can be calculated by an elementary integration (see (4.13)) and is 
equal to 277/p,  which meets our requirement. When p = 2, we have the same result as 
in the preceding symmetric two-band case. 

The present result coincides with that obtained by TDT who investigated a periodic 
linear chain by the Bloch theorem. 

7. Conclusions 

In this paper the recursion method is investigated analytically with main attention on 
its asymptotic properties in the multiband (band gap) case. The correspondence 
between the support of the spectrum and the asymptotic behaviours of the recursion 
coefficients is clarified. 
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When the band satisfies the Geronimus condition, then the limit relations of the 
recursion coefficients such as (4.17) and (4.26) are derived through the EMF. Only the 
support E of the band is made use of, and thus they contain E (i.e. the positions of 
the band edges) as a parameter, and are independent of the band shape. The characteris- 
tic quantities in the present theory are as follows, each of which is a function of E only. 

(i)  Saddle points sk ( k  = 1 , 2 , .  . . , m - l ) ,  which are needed to calculate succeeding 
characteristic quantities. 

(ii) Transfinite diameter ? ( E ) ,  which is equal to the limit of the geometric mean 
of b,. 

(iii) Charges q k  ( k . =  1,2, . . . , m )  on the component line segments, which are related 
to the period of the asymptotic oscillations. 

(iv) A i  ( i  = 1,2,3,  . . . ), which correspond to the limits of the arithmetic means of 
the terms including the powers of a, and b,. The arithmetic mean of a, converges to 
A I  * 

When the asymptotic properties of the truncated basis are examined, the function 
X ( x ;  E )  defined by (4.9) plays an important role, and it also depends on E only. 

Our consequences are no doubt in accord with the TDT numerical results, as is 
discussed in § 4.5. In order to make more detailed numerical examination concerning 
such as the higher-order terms in (4.26) and the results in 0 5, we have also carried 
out the numerical experiments and the results will be reported in the near future. 

The present problem can be interpreted in a different manner. We have considered 
how the asymptotic recursion coefficients are restricted by the spectrum of the band. 
This is the inverse problem of a discrete Hill equation and is related to the periodic 
wave solution in the Toda lattice with exponential interactions (see Toda 1981). The 
limit relations (4.26) correspond to the conservation ones in this lattice. 

Appendix 1. Transfinite diameter and Tchebycheff constant 

In this appendix the definitions of the transfinite diameter and the Tchebycheff constant 
as functions of a closed set E are given without proof. For the proofs and the details 
see Tsuji (1959, p 53) or Hille (1962, p 264). 

The transfinite diameter is originally defined as follows. Let t , ( E )  be the 
[ f n ( n  - l)]th root of the maximum among the absolute values of the Vandermonde 
determinants over n variables on E, i.e. 

[rn(E)]n(n-1)’2= max n lzni-znj1. 
z.I.z.~, ... E E I s i s j s  n 

Then the sequence { r, ( E  )} is obviously non-negative and can be proved to be monotone 
non-increasing. Therefore the limit of t , ( E ) ,  say 7 ( E ) ,  exists, which is the transfinite 
diameter of E. 

The Tchebycheff constant, say p ( E ) ,  is defined as the limit of the nth root of the 
maximum absolute value of the Tchebycheff polynomial of degree n defined on E, i.e. 

p ( E )  = lim ( M (  T,( . ; E ) ;  E ) ) ” ” .  
n-w 

The equalities T ( E )  = p ( E )  = ? ( E )  are well known in the analytic potential theory, 
y (  E )  being the logarithmic capacity. 
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Appendix 2. Expressions by elliptic functions in the two-band case 

In the two-band case ordinary elliptic integrals appear, and thus the characteristic 
quantities can be written by use of the (Jacobi) elliptic functions. It requires some 
tedious calculation to obtain the simplified expressions and here we give them without 
derivation. 

We let 

w1 = A I  - B1 ~2 = A2- B2 g = B 1 - A 2  

and do not write the symbol E as the support since it is customarily used as the 
complete elliptic integral. The modulus of the elliptic functions given by 

k 2  = g(  WI + w2 + g ) / [ (  w1+ g ) (  w2 + g)1 

is common to the following expressions. The results are 

ql /T  = 1 + u / K  q 2 / ~ =  1 - u l K  

si = f { ( B i +  A21 - g  sn U +E(wi + ~ ) ( w ~ + ~ ) I ' / ~ Z ( U ) I  
where U is defined by sn U = ( w1 - w 2 ) / (  w1 + w2) and the Jacobi zeta function is used: 

U =  (1_k2t2 ) -1 /2 (1 - f2 ) -1 /2df  

Z (  U )  = (1 - k 2 t 2 ) ' / 2 (  1 - t 2 )  -'I2 dt  - (E / K ) u  ru 
K and E being the complete elliptic integrals of the first and the second kinds 
respectively. 

For the numerical evaluation these expressions seem to be less useful, if the computer 
is available, than the numerical integration of X ( x ;  E)  by which the estimates in 0 4.5 
are obtained. 
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